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III. NUMERICAL RESULTS

Letting the lower half-space be perfectly conducting, the cor-
rection fact, A, is plotted in Figs. 2 and 3 as a function of H for
various values of D, when 6, =0 and 45°, respectively; the
results are in general agreement with those sketched in an earlier
study [1]. As expected, the values of A for H — oo approach those
results furnished by MacFarlane [4] where he assumed the grid
was located in free space.

Similar results are shown in Figs. 4 and 5 when N =1.57. Fig.
6 shows the correction factor when region 1 is the denser medium
(i.e., N=1/1.57) and 6, =0. The general shapes of the curves
shown in Figs. 4, 5, and 6 are predicted by (9), and the values of
A for H - w0 approach those of MacFarlane. The numerical data
in Fig. 6 supersede and extend an earlier investigation [2].

IV. CONCLUDING REMARKS

We have extended and updated various results for the correc-
tion term used in computing the impedance of a wire grid parallel
to a dielectric interface. We stress that the results herein are
restricted to the case where the electric field is always parallel to
the grid’s wires.
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Analysis of Wide Transverse Inductive Metal Strips
in a Rectangular Waveguide

BRIGHT H. CHU anp KAI CHANG, SENIOR MEMBER, IEEE

Abstract — An analysis based on the variational method and the moment
method has been developed to calculate the discontinuity susceptance due
to one or more inductive strips in a rectangular waveguide. The strips can
have wide widths and be located unsymmetrically on the transverse plane
of the waveguide. The current distribution on the strips has been deter-
mined by solving a set of linear equations. The theoretical results agree
closely with experiments.

I. INTRODUCTION

Waveguide inductive strip discontinuities have many applica-

tions in waveguide filters and matching networks. Many analyses

have been reported for single and multiple inductive strips in
waveguide [1}-[7]. Marcuvitz provided closed-form formulas for
the reactance of a transverse inductive strip with a broad range of
widths [1]. The solution is only valid for a centered strip and only
one strip can be considered. For a narrow strip, a solution based
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on the variational method can be found in Collin [2]. The strip
location is not limited to the center of the waveguide. Chang and
Khan [3], [4] reported an analysis for a two- and a three-strip
discontinuity using the variational method. The current density
ratios between the strips have also been determined. The analysis
is limited to narrow strips since a constant current distribution is
assumed on each strip. Furthermore, as the number of strips
increases, the analysis becomes very complicated and a large
number of nonlinear equations for current ratios are difficult to
solve. Lewin reported a method of solving a general unsymmetri-
cal multiple-strip geometry by using a singular-integral equation
over a multiple interval [5], [6]. The method was based on the
singular-integral equation approach which had previously been
applied to a symmetrical double inductive aperture [7]. The
analysis is quite general but no numerical results were reported.

The moment method has recently been used for the analysis of
a probe-excited waveguide [8] and a single inductive metal post
[9]. Analyses for inductive posts and diaphragms have also been
reported [10], [11].

This paper reports an analysis based on variational and mo-
ment methods to calculate the discontinuity susceptance due to
both a single strip and multiplé strips in waveguide. The strips
are located unsymmetrically on the transverse plane of a wave-
guide and the widths of the strips can be large. The current
distribution on each strip is approximated by pulse expansion
functions. The moment method is first used to determine the
amplitudes of these expansion functions by solving an integral
equation. Once the current distribution is determined, the varia-
tional method is used to calculate the discontinuity susceptance.
Analyses for both single and multiple strips are given. Theoretical
results have been compared with experiments for single wide
centered strips, a single wide off-centered strip, a two-strip obsta-
cle, and a three-strip discontinuity. The agreement is very good.

II. ANALYSIS OF A SINGLE WIDE STRIP

It is assumed that the transverse metal strip is located at z = 0,
as shown in Fig. 1. The strip is assumed to be infinitesimally thin
and made of perfect conductor. By the requirement that the
tangential £ field vanish on the perfectly conducting strip sur-
face S, we have [2]

x/
/ /e 1
1~F a ) ; J(x)dx'=0 (1)

X J@pg i 1 nox ,  nw

where J(x’) is the current distribution on the strip, a is the width
of the rectangular waveguide, and the integration is performed on
the strip surface S. The propagation constant I, is defined as

7 2 2
I‘)I=;Vn~*(2a/AO) :

To solve the unknown current J(x), it can be expressed in
terms of pulse expansion functions as

I3 = B4y f(x) = X4 [U(x =) = U(x=x,)] ()

where N is the total number of segments for the pulse expansion
function, U(x) is the step function, and 7, is the amplitude. The
index ¢ indicates the gth segment along the strip. Equation (1)
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Fig. 1 A rectangular waveguide with a transverse inductive strip. (a) Cross
section. (b) Pulse expansion function with matched points indicated by
crosses. (¢) Equivalent circuit.
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where c¢ is the speed of light.
The coordinates of the locations of the segments can be calcu-
lated as follows:
w
xq=x(—5+(q—1)h (4)
where x, is the center location of the strip, w is the width of the
strip, and A is w/N.

By choosing a suitable weighting function, (3) can be converted
to a system of linear equations of amplitudes I, g=1,2,---, N.
The dimensions of the system of linear equations are N by N if
the following procedure is adopted. The procedure is to multiply
both sides of (3) by the weighting functions and then integrate
both sides. The type of weighting functions is chosen to be

W(x,)=8(x—%,),

where X, = (x, + x,,,)/2 are the matched points located at the

p=12,--- N (5)
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centers of segments. This is the matched-point method and the
weighting functions are of the impulse function type. Although
this is the simplest type of weighting function, the results are
very good, as shown in the following sections. The locations of
the segments, together with the matched points, are illustrated in
Fig. 1(b).

The calculated current can be utilized in the following varia-
tional formula to obtain the normalized susceptance [2]:

7X
f](x) Sin— dx

X nax’

ff]*(x)](x)sm——sm dxdx’.

J'MS
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(6)

For the pulse expansion function, the variational formula be-
comes

5
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The infinite series are truncated after n, terms determined by a
method presented by Eisenhart and Khan [12]. The truncation
will save computation time without loss of accuracy.

III. RESULTS FOR SINGLE STRIPS

Measurements were carried out with strips in a conventional
X-band rectangular waveguide with a width of 0.9 in and a height
of 0.4 in. The strip is made of copper with a thickness 0.005 in.
An HP8510 network analyzer was used to measure the S,
parameter. From the S,, parameter, the discontinuity suscep-
tance can be calculated. Since the strip is assumed to be lossless,
it can be represented by the circuit shown in Fig. I(c) with
matched circuits on both sides. We have

2
=|8,le*=—=.
o1 =1851e 11y
The normalized susceptance can be found as follows:
- B 2sin
B=—=—-— ¢ . (3)
¥y 521 :

A. Single Centered Strips

Experiments were performed for strips with widths of w = 0.118
in (0.131q), 0.276 in (0.306a), 0.433 in (0.4814), and 0.472 in
(0.5254). The number of segments is determined to be 30 per
free-space wavelength, i.e., SNPW = 30. A comparson between
measurements and theoretical results is given in Fig. 2 (f=
9 GHz or a /A, = 0.6858) as a function of strip width. It can be
seen that the theoretical results agree closely with measurements.
A comparison between the theoretical results and Marcuvitz’s
formula is also shown in Fig. 2. From these curves, it can be seen
that the absolute value of the susceptance is increased as the
width of the strip increases.

Computational studies have been carried out to determine the
number of segments required for calculation. The selection of 30
segments was based on the fact that little improvement in accu-
racy can be obtained for more than 30 segments. However, loss
of accuracy could occur when the number of segments is less
than 30.
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B. Single Off-Centered Strips

Measurements for off-centered strips have also been carried
out for a strip centered at 0.375 in (0.416a) with a width of 0.276
in (0.306a). A comparison between the experimental and the
theoretical results is shown in Fig. 3. Again, the agreement is very
good.

IV. RESULTS FOR TWO AND THREE STRIPS

The analysis given in Section II can be extended to various
configurations of multiple strips. The geometry of multiple strips
is shown in Fig. 4.
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A. Two Strips

The theoretical results using the pulse expansion function were
compared with Chang and Khan’s experiments shown in [3, fig.
4(a)]. They agree closely, as shown in Fig. 5. To calculate the
current ratio, the total current on each strip is the sum of the
currents on segments if there is more than one segment on each
strip.

B. Three Strips

The theoretical results for a three-strip discontinuity were
compared with Chang and Khan’s experiments in [4, fig. 2] as
shown in Fig. 6. The agreement is fairly good, especially at the
high-frequency end. Since the experimental results were obtained
by slotted line measurement, the discrepancies at the low-
frequency end are believed to be caused by the error in measur-
ing high susceptance.

V. CONCLUSIONS

A method to calculate the discontinuity susceptance of trans-
verse inductive strips in a rectangular waveguide has been devel-
oped. The method is based on the variational method and mo-
ment method for impedance and current calculation. The results
compare favorably with Chang and Khan’s experimental data [3],
[4], Marcuvitz’s results [1], and our own experimental measure-
ments. The advantages of this method are that strips can be wide
and the locations of the strips are flexible.
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On Microwave Imagery Using Bojarski’s Identity
TAH-HSIUNG CHU, MEMBER, IEEE, AND DING-BING LIN

Abstract —In this paper, theoretical and experimental studies of mi-
crowave imagery of a perfectly conducting convex object of a size larger
than the incident wavelength are presented. Experimental data were mea-
sured in the frequency range 4-10 GHz. Calculations were done with
Bojarski’s identity, one-dimensional Fourier inversion of the range-normal-
ized scattered far field, and a back-projection algorithm. The images show
the distribution of specular reflection regions on the surface of the object.

I. INTRODUCTION

Bojarski’s identity [1], [2] forms the basis for imaging a per-
fectly conducting convex object under physical optics approxima-
tions. The identity states that the characteristic function y(r) of
the object, which is unity inside the scattering object and zero
outside, and T'(p) = 2o p~2[p(p)+ p* (— p)] make up a Fourier
transform pair where r is a position vector and p = — 2k, = pf s
with i, as the direction of the incident plane wave. The quantity
p(p)/p is the range-normalized scaftered far field measured at
all frequencies and viewing angles. However, in the case of
microwave imaging, the reconstructed image becomes the deriva-
tive (or the edge information) of the characteristic function, since
a band-pass version of I'(p) is measured [3], [4]. The image
resolution is inversely proportional to the p-space aperture (or
area of I'(p)) formed by varying frequency and viewing angle.
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Fig. 1. The scattering geometry

It is known that the far field scattered by a metallic object
subjected to coherent microwave illumination is determined by
the relative positions of scattering centers on the illuminated
portion of the object [5]. A scattering center is defined as the
object structure that is observed in the backscattered field. For a
smooth convex object of size larger than the incident wavelength,
these scattering centers are the specular reflection regions dis-
tributed on the illuminated object surface.

" The aim of this paper is to show analytically and experimen-
tally that the reconstructed image of a convex metallic object
using Bojarski’s identity gives the distribution of these specular
regions over the entire object surface.

II. THEORETICAL ANALYSIS

As a perfectly conducting convex object is illuminated with a
monochromatic plane wave propagating in the direction i,, as
shown in Fig. 1, its range-normalized backscattered far field
under physical optics approximations can be expressed as [1], [2]

ele)

(1)
P

J AN
W;/}p‘ﬁ>0(z[,'n)e P rds(r)

where p = —2ki, =pi;, k=2af/c, fi is the outward vector
normal to the object surface S(r), and the surface integral is over
the illuminated portion of the object. In general, this surface
integral cannot be integrated analytically. However, by adding
p(p) with p*(— p) measured with the transmitter /receiver (T/R)
unit at the other side of the object and using the divergence
theorem, one can obtain [1], {2]

2

L)) = [x(nerrar ()
where y(r) is the characteristic function of the scattering object
B. defined as

I'(p) =

rinB
r notin B.

v ={4 &)

Equation (2) is known as Bojarski’s identity [1], [2]. It shows
that an image of the scattering object B can be reconstructed
from the backscattered far field measured at all frequencies and
viewing angles through the Fourier inversion. The reconstructed
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