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III. NUMERfCAL RESULTS

Letting the lower half-space be perfectly conducting, the cor-

rection fact, A, is plotted in Figs. 2 and 3 as a function of H for

various values of Dl when 610= O and 45”, respectively; the
results are in general agreement with those sketched in an earlier

study [1]. As expected, the values of A for H-+ m approach those

results furnished by MacFarlane [4] where he assumed the grid

was located in free space.

Similar results are shown in Figs. 4 and 5 when N= 1.57. Fig.

6 shows the correction factor when region 1 is the denser medium

(i.e., N= 1/1.57) and 60= O. The general shapes of the curves

shown in Figs. 4, 5, and 6 are predicted by (9), and the values of

A for H ~ cc approach those of MacFarlane. The numerical data

in Fig. 6 supersede and extend an earlier investigation [2].

IV. CONCLUDING REMArucs

We have extended and updated various results for the correc-

tion term used in computing the impedance of a wire grid parallel

to a dielectric interface. We stress that the results herein are

restricted to the case where the electric field is always parallel to

the grid’s wires.
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Analysis of Wide Transverse Inductive Metal Strips

in a Rectangular Waveguide

BRIGHT H. CHU AND KAI CHANG, SENIOR MEMBER, IEEE

,4Mracf — An analysis based on the variational method and the moment

method has been developed to calculate the discontinuity susceptance due

to one or more inductive strips in a rectangular wavegnide. The strips can

have wide widths and be located unsymmetrically on the transverse plane

of the waveguide. Tbe current distribution on the strips has been deter-

mined by solving a set of linear equations. The theoretical results agree

closely with experiments.

I. INTRODUCTION

Waveguide inductive strip discontinuities have many applica-

tions in waveguide filters and matching networks. Many analyses

have been reported for single and multiple inductive strips in

waveguide [1]– [7]. Marcuvitz provided closed-form formulas for

the reactance of a transverse inductive strip with a broad range of

widths [1]. The solution is only valid for a centered strip and only

one strip can be considered. For a narrow strip, a solution based
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on the variational method can be found in Collin [2]. The strip

location is not limited to the center of the waveguide. Chang and

Khan [3], [4] reported an analysis for a two- and a three-strip

discontinuity using the variational method. The current density

ratios between the strips have also been determined. The analysis

is limited to narrow strips since a constant current distribution is

assumed on each strip. Furthermore, as the number of strips

increases, the analysis becomes very complicated and a large

number of nonlinear equations for current ratios are difficult to

solve. Lewin reported a method of solving a general unsymmetri-

cal multiple-strip geometry by using a singular-integral equation

over a multiple interval [5], [6]. The method was based on the

singular-integral equation approach which had previously been

applied to a symmetrical double inductive aperture [7]. The

analysis is quite generaf but no numerical results were reported.

The moment method has recently been used for the analysis of

a probe-excited waveguide [8] and a single inductive metaf post

[9]. Analyses for inductive posts and diaphragms have also been

reported [10], [11].

This paper reports an analysis based on variational and mo-

ment methods to calculate the discontinuity susceptance due to

both a single strip and multiple strips in waveguide. The strips

are located unsymmetrically on the transverse plane of a wave-

guide and the widths of the strips can be large. The current

distribution on each strip is approximated by pulse expansion

functions. The moment method is first used to determine the

amplitudes of these expansion functions by solving an integral

equation. Once the current distribution is determined, the varia-

tional method is used to calculate the discontinuity susceptance.

Analyses for both single and multiple strips are given. Theoretical
results have been compared with experiments for single wide
centered strips, a single wide off-centered strip, a two-strip obsta-

cle, and a three-strip discontinuity. The agreement is very good.

II. ANALYSIS OF A SINGLE WIDE STRIP

It is assumed that the transverse metaf strip is located at z = O,

as shown in Fig. 1. The strip is assumed to be infinitesimally thin

and made of perfect conductor. By the requirement that the

tangential E field vanish on the perfectly conducting strip sur-

face S, we have [2]

where .T(x’) is the current distribution on the strip, a is the width

of the rectangular waveguide, and the integration is performed on

the strip surface S. The propagation constant r. is defined as

To solve the unknown current J(x), it can be expressed in

terms of pulse expansion functions as

J(x) = $ Iqf(x,) = f q[u(x-x,)-q-xq+l)] (2)

~=1 ~=1

where N is the total number of segments for the pulse expansion

function, U(x) is the step function, and 1~ is the amplitude. The

index q indicates the q th segment along the strip. Equation (1)
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Fig. 1 A rectangular waveguide with a transverse reductive strip. (a) Cross

section. (b) Pulse ex~ansion function with matched ~oints indicated bv.
crosses. (c) Equivalen~ circuit
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where c is the speed of light.

(3)

The coordinates of the locations of the segments can be calcu-
lated as follows:

Xq=x, –;+(q–l)h (4)

where x, is the center location of the strip, w is the width of the
strip, and h is w/N.

By choosing a suitable weighting function, (3) can be converted

to a system of linear equations of amplitudes Iq, q =1,2,. . . . N.

The dimensions of the system of linear equations are N by N if

the following procedure is adopted. The procedure is to multiply

both sides of (3) by the weighting functions and then integrate

both sides. The type of weighting functions is chosen to be

W’(2P) =8(x–ip), p=l,2,. ... N (5)

where 2P = ( XP + XP+ ~)/2 are the matched points located at the
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centers of segments. This is the matched-point method and the
weighting functions are of the impulse function type. Although
this is the simplest type of weightim g function, the results are
very good, as shown in the following sections. The locations of

the segments, together with the matched points, are illustrated in
Fig. l(b).

The calculated current can be utilized in the following varia-
tional formula to obtain the normalized susceptance [2]:

.B 2j

(6)

For the pulse expansion function, the variational formula be-

comes

mq+l‘f Iq( “:” ~) ‘Cos — – Cos
B _ 2j q=l

——
Ye––r* cm

,. (7)

~~2 & f rq(cos!:~ -coS%)
,, q=l

The infinite series are truncated after n~ terms determined by a

method presented by Eisenhart and Khan [12]. The truncation

will save computation time without lCSS of accuracy.

111. RESULTS FOR SIr?GLE STRIPS

Measurements were carried out with strips in a conventional
X-band rectangular waveguide with a width of 0.9 in and a height
of 0.4 in. The strip is made of copper with a thickness 0.005 in.
An HP851O network analyzer was used to measure the S21
parameter. From the S21 parameter, the discontinuity suscep-
tance can be calculated. Since the strip is assumed to be lossless,
it can be represented by the circuit shown in Fig. l(c) with
matched circuits on both sides. We have

The normalized susceptance can be found as follows:

E=;=–~~.
o Isz,l

A. Single Centered Strips

(8)

Experiments were performed for strips with widths of w = 0.118

in (0.131a), 0.276 in (0.306a), 0.433 in (0.481a), and 0.472 in

(0,525a). The number of segments is determined to be 30 per

free-space wavelength, i.e., SNP W =; 30. A comparison between
measurements and theoretical results is given in Fig, 2 (j’=
9 GHz or a /A[l = 0.6858) as a function of strip width. It can be

seen that the theoretical results agree closely with measurements.

A comparison between the theoretical results and Marcuvitz’s

formula is also shown in Fig. 2. From these curves, it can be seen

that the absolute value of the susceptance is increased as the

width of the strip increases.

Computational studies have been carried out to determine the

number of segments required for calculation. The selection of 30

segments was based on the fact that little improvement in accu-

racy can be obtained for more than 30 segments. However, loss

of accuracy could occur when the number of segments is less

than 30.
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B. Single Off-Centered Strips

Measurements for off-centered strips have also been carried

out for a strip centered at 0.375 in (0.416a) with a width of 0.276

in (0.306a). A comparison between the experimental and the

theoretical results is shown in Fig. 3. Again, the agreement is very

good.

IV. RESULTS FOR Two AND THREE STRfPS

The analysis given in Section II can be extended to various

configurations of multiple strips. The geometry of multiple strips

is shown in Fig. 4.
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Fig. 6. Calculated normalized susceptance versus measurements for three

strips in the case of [4, flg 2]

A. Two Strips

The theoretical results using the pulse expansion function were

compared with Chang and Khan’s experiments shown in [3, fig.

4(a)]. They agree closely, as shown in Fig. 5. To calculate the

current ratio, the total current on each strip is the sum of the

currents on segments if there is more than one segment on each

strip.

B. Three Strips

The theoretical results for a three-strip discontinuity were

compared with Chang and Khan’s experiments in [4, fig. 2] as

shown in Fig. 6. The agreement is fairly good, especially at the

high-frequency end. Since the experimental results were obtained

by slotted line measurement, the discrepancies at the low-

frequency end are believed to be caused by the error in measur-

ing high susceptance.

V. CO~CLUSIONS

A method to calculate the discontinuity susceptance of trans-

verse inductive strips in a rectangular waveguide has been devel-

oped. The method is based on the variational method and mo-

ment method for impedance and current calculation. The results

compare favorably with Chang and Khan’s experimental data [3],

[4], Marcuvitz’s results [1], and our own experimental measure-

ments. The advantages of this method are that strips can be wide

and the locations of the strips are flexible.
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On Microwave Imagery Using Bojarski’s Identity

TAH-HSIUNG CHU, MEMBER,IEEE,AND DING-BING LIN

Ab.vtr-act — In this paper, theoretical and experimental strrdles of mi-

crowave imagery of a perfectly conducting convex object of a size larger

than the incident wavelength are presented. Experimental data were mea-

sured in the frequency range 4-10 GHz. Calculations were done with

Bojarski’s identity, one-dimensionaf Fourier inversion of the range-normal-

ized scattered far field, and a back-projection algorithm. The images show

the distribution of specular reflection regions on the surface of the object.

I. INTRODUCTION

Bojarski’s identity [1], [2] forms the basis for imaging a per-

fectly conducting convex object under physicaJ optics approxima-

tions. The identity states that the characteristic function y(r) of

the object, which is unity inside the scattering object and zero

outside, and r(p) = 2~p–~[p(p)+ p*(– p)] makeup a FourierA.
transform pair where r is a position vector and p = – 2kt~ = p:P,

with ;A as the direction of the incident plane wave. The quantity

P( P )/P is the r~ge-norm~ized Scattered far field measured at
all frequencies and viewing angles. However, in the case of

microwave imaging, the reconstructed image becomes the deriva-

tive (or the edge information) of the characteristic function, since

a band-pass version of 17(p) is measured [3], [4]. The image

resolution is inversely proportional to the p-space aperture (or

area of I’(p)) formed by varying frequency and viewing angle.
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It is known that the far field scattered by a metallic object

subjected to coherent microwave illumination is determined by

the relative positions of scattering centers on the illuminated

portion of the object [5]. A scattering center is defined as the

object structure that is observed in tJm backscattered field. For a

smooth convex object of size larger than the incident wavelength,

these scattering centers are the spec vlar reflection regions dis-

tributed on the illuminated object surface.

The aim of this paper is to show analytically and experimen-

tally that the reconstructed image of a convex metallic object

using Bojarski’s identity gives the distribution of these specular

regions over the entire object surface.

II. T~ORETICAL ANALYSIS

As a perfectly conducting convex object is illuminated with a

monochromatic plane wave propagating in the direction ~A, as

shown in Fig. 1, its range-normalized backscattered far field

under physical optics approximations can be expressed as [1], [2]

P(P) =
— +J,n>hv-” ‘~~(r) (1)

P“, ”

where p = – 2kr?L = p;P, k = 2 rrf/c, h is the outward vector
normal to the object surface S(r), and the surface integral is over
the illuminated portion of the object. In general, this surface
integral cannot be integrated analyt ~cally. However, by adding
p(p) with p“( – p) measured with the transmitter/receiver (T/R)

unit at the other side of the Objecl and using the divergence

theorem, one can obtain [1], [2]

211G
r(p) =T[P(P)+P*(– P)] =fy(r)e-’c ‘d~ (2)

where y(r) is the characteristic function of the scattering object

B, defined as

{
y(r) = ::

rin B

r not in B
(3)

Equation (2) is known as Bojarski’s identity [1], [2]. It shows

that an image of the scattering obj:ct B can be reconstructed

from the backscattered far field measured at all frequencies and

viewing angles through the Fourier inversion. The reconstructed
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